Elenco delle pubblicazioni


[3] R. Musina, A. I. Nazarov, Sobolev and Hardy--Sobolev inequalities for Neumann Laplacians on half spaces, preprint (2017).

[2] R. Musina, A. I. Nazarov, Fractional Hardy-Sobolev inequalities on half spaces, preprint arXiv:1707.02710 (2017).

[1] R. Musina, A. I. Nazarov, Strong maximum principles for fractional Laplacians, preprint archiv:1612.01043 (2016)

Research papers

[52] R. Musina, A. I. Nazarov, A note on truncations in fractional Sobolev spaces, Bulletin of Mathematical Sciences, (2017). doi:10.1007/s13373-017-0107-8 (online first).

[51] R. Musina, A. I. Nazarov, Variational inequalities for the spectral fractional Laplacian, Comput. Math. Math. Phys., to appear. Preprint arXiv:1603.05730v1 (2016).

[50] R. Musina, A. I. Nazarov, K. Sreenadh, Variational inequalities for the fractional Laplacian}, Potential Anal (2016). doi:10.1007/s11118-016-9591-9.

[49] A. Carioli, R. Musina, The Hénon–Lane–Emden System: A Sharp Nonexistence Result, Advanced Nonlinear Studies 17(3) (2017), 517-526.

[48] R. Musina, A.I. Nazarov, On fractional Laplacians - 3, ESAIM: Control, Optimisation and Calculus of Variations 22 (2016), 832-841.

[47] R. Musina, A.I. Nazarov, On fractional Laplacians - 2, Ann. Inst. H. Poincaré. Anal. Non Linéaire 33(6) (2016), 1667--1673.

[46] R. Musina, A.I. Nazarov, On the Sobolev and Hardy constants for the fractional Navier Laplacian,  Nonlinear Anal. 121 (2015), 123–129.

[45] A. Carioli, R. Musina, On the homogeneous Hénon-Lane-Emden system, NoDEA, 22 (2015) 1445-1459.

[44] R. Musina, A.I. Nazarov, Non-critical dimensions for critical problems involving fractional Laplacians. Revista Matematica Iberoamericana {\bf 32} (2016), 257--266.

[43] R. Musina, Optimal Rellich-Sobolev constants and their extremals,  Diff. Integral Eq., 27 (2014), 579--600.

[42] R. Musina, A.I. Nazarov, On fractional Laplacians, Comm. Partial Diff. Eq., 39 (2014), 1780--1790.

[41] P. Musina, K. Sreenadh, Radially symmetric solutions to the Hénon-Lane-Emden system on the critical hyperbola, Comm. Contemporary Math.  (2014) 16, No. 3.

[40] R. Musina, Weighted Sobolev spaces of radially symmetric functions, Annali di matematica pura ed applicata, 193 (2014), 1629--1659.

[39] P. Caldiroli, R. Musina, Symmetry breaking of extremals for the Caffarelli-Kohn-Nirenberg inequalities in a non-Hilbertian setting, Milan J. Math.  81 (2013), 421--430.

[38] M. M. Fall,  R. Musina, Hardy-Poincare inequalities with boundary singularities, Proc. Roy. Soc. Edinburgh Sect. A   142  (2012), no.  4, 769--786.

[37] P. Caldiroli,  R. Musina, Rellich inequalities with weights, Calc. Var. Partial Differential Equations   45  (2012), no.  1-2, 147--164.

[36] M. Bhakta,  R. Musina, Entire solutions for a class of variational problems involving the biharmonic operator and Rellich potentials, Nonlinear Anal.   75  (2012), no.  9, 3836--3848.

[35] P. Caldiroli,  R. Musina, On Caffarelli-Kohn-Nirenberg-type inequalities for the weighted biharmonic operator in cones, Milan J. Math.   79  (2011), no.  2, 657--687.

[34] M. M. Fall,  R. Musina, Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials,  J. Inequal. Appl.   2011, Art. ID 917201, 21 pp.

[33] R. Musina, Planar loops with prescribed curvature: existence, multiplicity and uniqueness results, Proc. Amer. Math. Soc.   139  (2011), no.  12, 4445--4459.

[32] P. Caldiroli,  R. Musina, Bubbles with prescribed mean curvature: the variational approach, Nonlinear Anal.   74  (2011), no.  9, 2985--2999.

[31] R. Musina, Existence and multiplicity results for a weighted p-Laplace equation involving Hardy potentials and critical nonlinearities, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.   20  (2009), no.  2, 127--143.

[30] R. Musina, Existence of extremals for the Maz'ya and for the Caffarelli-Kohn-Nirenberg inequalities, Nonlinear Anal.   70  (2009), no.  8, 3002--3007.

[29] R. Musina, A note on the paper ``Optimizing improved Hardy inequalities'' by S. Filippas and A. Tertikas, J. Funct. Anal.   256  (2009), no.  8, 2741--2745.

[28] M. Gazzini,  R. Musina, On a Sobolev-type inequality related to the weighted p-Laplace operator, J. Math. Anal. Appl.   352  (2009), no.  1, 99--111. 

[27] M. Gazzini,  R. Musina, Hardy-Sobolev-Maz'ya inequalities: symmetry and breaking symmetry of extremal functions, Commun. Contemp. Math.   11  (2009), no.  6, 993--1007.

[26] R. Musina, Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal.   68  (2008), no.  12, 3972--3986.

[25] P. Caldiroli,  R. Musina, Weak limit and blowup of approximate solutions to H-systems, J. Funct. Anal.   249  (2007), no.  1, 171--198.

[24] R. Musina, On the regularity of weak solutions to H-systems, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.   18  (2007), no.  3, 209--219.

[23] P. Caldiroli,  R. Musina, On Palais-Smale sequences for H-systems: some examples, Adv. Differential Equations   11  (2006), no.  8, 931--960.

[22] P. Caldiroli,  R. Musina, The Dirichlet problem for H-systems with small boundary data: blowup phenomena and nonexistence results, Arch. Ration. Mech. Anal.   181  (2006), no.  1, 1--42. 

[21] R. Musina, The role of the spectrum of the Laplace operator on S^2 in the H-bubble problem, J. Anal. Math.   94  (2004), 265--291.

[20] P. Caldiroli,  R. Musina, H-bubbles in a perturbative setting: the finite-dimensional reduction method, Duke Math. J.   122  (2004), no.  3, 457--484.

[19] P. Caldiroli,  R. Musina, Existence of H-bubbles in a perturbative setting, Rev. Mat. Iberoamericana   20  (2004), no.  2, 611--626.

[18] P. Caldiroli,  R. Musina, Existence of minimal H-bubbles, Commun. Contemp. Math.   4  (2002), no.  2, 177--209.  

[17] P. Caldiroli,  R. Musina, Existence and nonexistence results for a class of nonlinear, singular Sturm-Liouville equations, Adv. Differential Equations   6  (2001), no.  3, 303--326.  

[16] P. Caldiroli,  R. Musina, Stationary states for a two-dimensional singular Schrödinger equation, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8)   4  (2001), no.  3, 609--633.

[15] P. Caldiroli,  R. Musina, On a class of two-dimensional singular elliptic problems, Proc. Roy. Soc. Edinburgh Sect. A   131  (2001), no.  3, 479--497.

[14] P. Caldiroli,  R. Musina, On a variational degenerate elliptic problem, NoDEA Nonlinear Differential Equations Appl.   7  (2000), no.  2, 187--199.

[13] P. Caldiroli,  R. Musina, On the existence of extremal functions for a weighted Sobolev embedding with critical exponent, Calc. Var. Partial Differential Equations   8  (1999), no.  4, 365--387. 

[12]  V. Coti Zelati, F. Dobarro,  R. Musina, Prescribing scalar curvature in warped products, Ricerche Mat.   46  (1997), no.  1, 61--76.

[11] R. Musina, Multiple positive solutions of a scalar field equation in   R^n, Topol. Methods Nonlinear Anal.   7  (1996), no.  1, 171--185.

[10] R. Musina, Lower bounds for the p-energy and a minimization property of the map x/|x|, Ricerche Mat.   43  (1994), no.  2, 335--346.

[9] G. Mancini,  R. Musina, The role of the boundary in some semilinear Neumann problems, Rend. Sem. Mat. Univ. Padova   88  (1992), 127--138.

[8] Y. M. Chen,  R. Musina, Harmonic mappings into manifolds with boundary, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)   17  (1990), no.  3, 365--392.

[7] R. Musina, On the continuity of the Nemitsky operator induced by a Lipschitz continuous map, Proc. Amer. Math. Soc.   111  (1991), no.  4, 1029--1041.

[6] G. Dal Maso,  R. Musina, An approach to the thin obstacle problem for variational functionals depending on vector valued functions, Comm. Partial Differential Equations   14  (1989), no.  12, 1717--1743. 

[5]  R. Musina, S^2-type minimal surfaces enclosing many obstacles in   R^3, Rend. Istit. Mat. Univ. Trieste   20  (1988), no.  2, 187--201 (1990).

[4] G. Mancini,  R. Musina, Surfaces of minimal area enclosing a given body in   R^3, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)   16  (1989), no.  3, 331--354 (1990). 

[3] R. Musina, H-superfici con ostacolo, Ann. Univ. Ferrara Sez. VII (N.S.)   34  (1988), 1--14. 

[2] G. Mancini,  R. Musina, Holes and obstacles, Ann. Inst. H. Poincare Anal. Non Lineaire   5  (1988), no.  4, 323--345. 

[1] G. Mancini,  R. Musina, A free boundary problem involving limiting Sobolev exponents, Manuscripta Math.   58  (1987), no.  1-2, 77--93.

Research announcements 

[A2] Y. M. Chen,  R. Musina, Le flot d'applications harmoniques d'une variete compacte sur une variete à bord, C. R. Acad. Sci. Paris Ser. I Math.   309  (1989), no.  7, 499--501. 

[A1] G. Mancini,  R. Musina, Sur un problème à frontière libre dans le cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Ser. I Math.   303  (1986), no.  19, 959--962. 


Conferences proceedings 

[P5] P. Caldiroli, R. Musina,  A class of second order dilation invariant inequalities, in  Concentration Analysis and Applications to PDE, ICTS Workshop (Bangalore, 2012), 17--28 Springer

[P4] P. Caldiroli,  R. Musina, On the Dirichlet problem for H-systems on the disc with prescribed mean curvature, in  EQUADIFF 2003, 525--530, World Sci. Publ., Hackensack, NJ.

[P3] P. Caldiroli,  R. Musina, S^2-type parametric surfaces with prescribed mean curvature and minimal energy, in  Nonlinear equations: methods, models and applications (Bergamo, 2001), 61--77, Progr. Nonlinear Differential Equations Appl., 54 Birkhauser, Basel.

[P2] R. Musina, Variational problems with obstacles and harmonic maps, in  Nematics (Orsay, 1990), 279--290, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332 Kluwer Acad. Publ., Dordrecht.  

[P1] G. Mancini,  R. Musina, Surfaces of minimal area supported by a given body in   R^3, in  Variational methods (Paris, 1988), 319--327, Progr. Nonlinear Differential Equations Appl., 4 Birkhauser, Boston, Boston


Tipo Informazione: