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|. INTRODUCTION

Qualitative Domains are particular partially ordered sets introduced by Girard [61,[7] as
i alternative scenario to Scott Domains for the semantics of lambda calculi. The main
Jifference between these two notions of domain lies in the function space construction. In
fact, if D and E are two qualitative domains, the qualitative function space from D to E
consists of a proper subset of all Scott continuous functions from D to E endowed by an
order relation which is strictly included in the pointwise ordering. Elements of the
qualitative function space were called stable functions by Berry [4], who first introduced
them in the context of sequential functions. The order relation on stable functions induces
a finer notion of approximation than the one induced by the extensional pointwise ordering.
Recently qualitative domains have been utilized by Girard for the coherent semantics of
linear Logic [8].

The interpretations of A-terms in a given qualitative A-model are particularly difficult to
compute and visualize. It is therefore desirable to build a formal system for correctly
reasoning about them. In this paper we show how to define such a formal system for an
interesting class of qualitative A-models. Actually, when a qualitative A-model M of this
class has a finite inductive definition, our formal system turns into a type assignment
system b= pg for A-terms; the set of types of |- p being isomorphic to the set of atoms of

M. It is then possible to derive a type 0 for a A-term M if and only if the corresponding
atom belongs to the interpretation of M. A similar relation between Scott's D g -A-models

and intersection type assignment systems for A-calculus was studied in [2], [5], [10].See
also [1] for related work.

Describing qualitative A-models through a type assignment system provides a deep
insight into the structure of qualitative domains themselves. Moreover this technique makes
possible to apply standard methods in proof theory to the study of the fine structure of the
models. In this paper, for instance, we derive an Approximation Theorem for a particular
model from a normalization property of the type derivation system (i.e., we show that the
interpretation of a term is the union of the interpretations of its syntactical approximants ).

Quite frequently the type assignment systems b= pg that we introduce are significant in
themselves. besides their connection with M. The most striking feature of a system M
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is that the structural weakening rule faily for it, ot equivalently that b= pg haware
assumption discipline. Le., if I' F=pg MiO and {x:ct) €T then x occurs free in M.
due to the fact that the meaning of the consequence relation axiomatized by 1= oy
Lyping judgements, ie {xq: . Xyl - p Mia is that l"l:al-“--"n:“n’

minimal set of assumptions under which M:0 is derivable. This is in sharp contras
what happens in the intersection Lype assignment systems, where if I'pqMo then,

every x and ¢, Tu{x:a} Mo,

In Section 2 of this paper we review the basic definitions and results in the the
qualitative domains and define three A-models Q, P and S. In Section 3 we definw
notion of a qualitative A-structure (D,i). We introduce a formal system S(p ) il
show that it is sound and complete for deriving approximation judgements hol
interpretations in (D,i). In Section 4 we give finite inductive presentations of the models
Pand S and we tailor the system S(p i) to each of these, thus producing three |
assignment systems o, b-g. |- p. Finally in Section 5 we give a few examples of i
the system b= pg can be used to analyze the fine structure of M. In particular we prove
Approximation Theorem for Q, using a normalization property of the type assijn
system and show that the theory of the model P does not equate all unsolvable terms
results concerning the model Q appearing in this paper are proved using o diff
technique also in [11].

Finally, two remarks are in order.

In this paper we are concerned with the untyped A-calculus. Clearly this is one of |
most intriguing and difficult calculi. Our results subsume results for models af (¥
A-calculi, based on qualitative domains.

Moreover, the techniques outlined in this paper can be generalized to the colnﬂd
semantics for languages based on Girard's linear logic.

Throughout the paper we assume the reader familiar with the basic notions &
notations of A-calculus as given in [3].

2. QUALITATIVE A-MODELS.

In this section we recall some definitions concerning qualitative domains and we rcvr
the theory of qualitative A-models [6]. Finally we define three examples of qualitative
2-models : Q, Pand S.
We will denote standard set theoretic inclusion (not necessarily strict), with €. '
DEFINITION 1.
i) A qualitative domain D is a set of sets such that:

“gep i

- D is closed under directed unions: i.e.,
if Vi€l (A;€D) and Vi j €l 3k €l (AiuAjCAk) then U;e Aj €D;
- if a€D and b C a, then b€D;
ii) a qualitative domain D is binary if moreover:
_if d © uD and d€D then there are a,b€d such that {a, b} ¢D.

Binary qualitative domains are known as coherent spaces in linear logic. Thek
structures provide a denotational semantics, in the tradition of Heyting and Scatl,

proofs in full linear logic.
Elements of the set uD = { z |z € a € D } are called atoms of D. This set will &l b

denoted with |D|. a€D is finite if and only if {z | zCa} is finite. Two clements of [, sy &
and b, are compatible if and only if aub € D.

DEFINITION 2.
Let D and D' be two qualitative domains;
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1) o function F: D=D" is stable if and only if

1) if n€hED then Fla)CFE(b),

2)if [ ajli€l}is a not empty directed set then F(U;ep 0=y e Flap:

1) if aub € D then Fanb) = Fla)nF(b);

let F: D=D'be a stable function. The trace of F is:

Te(F) = [(a,z) | ais a finite element of D, 2€lD'l, z€F(a) and z¢F(a') for all a'Ca but

nea'});

{11 stable functions can be ordered according to the order relation Eg introduced by Berry
[4] defined as follows: let F, G: D>D' be two stable functions:
I € G if and only if Va,beD (ach implies E(a) = E(b)nG(a)).

(ne can easily check that if F € G then VaeD, F(a)cG(a).
I'he following proposition illustrates two useful properties of stable functions under Berry's
order refation.

PROPOSITION 3.

i) If F is a constant function and G Eg F then G is also a constant function.

i) Let F: DD’ be a stable function. If both (a,2) and (b,z) belong to Tr(F) then a and b
are not compatible.

PROOE.

i) Assume G E4 F and let G(a) = G(b). Without loss of generality we can assume acb.
Then G{a)=F(a)n G(b). But this is impossible since G(b)< E(a).

i) Let a and b be compatible. By definition of stable function, F(anb)=F(a)n F(b), so
zeF(anb). But, by definition of trace, zEF(anb) implies there exists dC(anb) such that
(d,2)eTe(F) and hence (a,z)€Tr(F) and (b,2)€Tr(F). D

Proposition 3.i) implies that E is strictly finer than the pointwise order relation. In fact,
let f, 1, denote the step function Ax.if acx thenbelse @. Then f, y is cleatly stable and
pointwise smaller than the constant function Ax.b. But it is not the case that f; , Eg 2x.b.

The construction of the qualitative function space is made possible by the following
theorem. See [6] for a proof.

REPRESENTATION THEOREM.

let D, D' be two qualitative domains.

i) A stable function F: D-D' is completely determined by its trace Te(F) in the following
sense: F(a) = {z | (d,z)€ Tr(F) and dcaf.

i) Let [D-¢D'] be the set of the traces of all stable functions from D to D'. [D=D'lis a
qualitative domain, and it is isomorphic to the set of all stable functions from D to D',
ordered by E¢. Hence G Eg F if and only if Te(G) € Te(F).

As remarked earlier, qualitative domains can be used to provide a denotational
semantics for programming languages. We will show how to do this for the untyped
jambda calculus A. Namely, we will introduce a suitable category BQual, where we will
be able to manufacture qualitative A-structure and qualitative 2. -models.

DEFINITION 4.

i) Let D and D' be qualitative domains. A qualitative morphism from D to D is an
injective function f : ID| - [D'| such that forallay,...,a; € DI, {al....,an]e D if and
only if {f(a}).....f(ay)} € D'.

ii) BQual is the category with binary qualitative domains as objects and with
qualitative morphisms as morphisms.
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DEFINITION 5. 1

i) A qualitative A-structureis a pair (D, 1) where D is a binary qualitative domu
i:[R[- [D|is an injective function, where R € [D=.D] is a qualitative domain. It i
to be the domain of representable functions.

ii) The interpretation of A-terms in a qualitative A-structure (D, 1) is a function
[ 1: A » Env - D inductively defined as follows:

[x1p = p(x)

[MNIp = H; (IMIp) [INIp

[Ax.MIp = K; (AdeD. [MIpld/x])

where:

H; (d) = {a | i(a)ed} and K{(e) = {i(a) | ace}

Env = {p | p: Variables = D} and pld/x] denote the function:
pld/x] (y) = if x=y then d else p(y).

iii) Environments are partially ordered componentwise, i.e.,
Yx.px)cp'(x). :
Similarly two environments p and p’ are said to be compatible if they
componentwise compatible.

p<p’ if and anly

The interpretation function satisfies the following properties; see [6] for a proof:

PROPOSITION 6.
et (D, i) be a qualitative A-structu
ilj }sie lziC Id([lD—’sD]I- and hence ﬁe(lx,M)N]]p < [MIN/x]1p. The B) rule holdy i
only if Hje K, is an isomorphism.
ii) K;o H;< Idp, and hence [(Ax.Mx)Ip € [MIp provided x does not oceur froe i

The 1) rule holds if and only if K;oH; is an isomorphism.

The above proposition motivates the following important definition.

DEFINITION 7. v W A
A qualitative A-structure (D, i) is a qualitative A-model if H;o Kizld[D-)le cand i iy

extensional qualitative A-model if moreover K;o H;=Idp,.

One can easily check that a qualitative A-model is a A-model according to the sti
definition given in [9].

In BQual qualitative A-models can be built using limit construction as in (6] i
Girard [6] showed that the stable function space constructor [.=¢.], the cartesinn
constructor x and the coalesced sum constructor + are functors in BQual. Moreover |
functors are "well behaved" in the sense that recursive equations in BQual written 4
them can be solved using standard limit constructions.

Our notion of qualitative A-structure and qualitative A-models are not as genmul
those introduced by Girard in [6]. Namely we restricted the original notions to the cal
BQual. We could have dealt with Girard's notions, but this would have lead to {ney
and tediuos complications in the following sections.

In this paper we discuss in detail three particular qualitative A-models. The first i
Q=(Dg , ip.) is the "minimal” solution, up to isomorphism, of the recursive equitinig

BQual: D = P(w)x [D - D]. It is defined as follows: DQ = IimnzO(Dn-in) wh
Do={D}, Dy, 1= P(®@) x [Dy=¢D, ] and the initial morphism i from Dg to Dy is the s
function. igy is naturally induced by i, namely ig=Ax€|[D =¢DI|. (. x).

The other two models are both solutions of the equation D= [D > D 1. Let Donlﬂ."
and D, , 1=[D;~:D,]. We can define two morphisms from D to Dy, namely Sl
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|
i
L and P () ({a},a) as shown in the following picture: P

AR s e ) »{(fa}.a))

fd ‘w@

Dy Dy=[Dy~4Do]

Lot Dgbelim 5o (D ,iy) obtained by taking i0=is and let D p be the limit obtained by
tnking i i? We will call S the model ( Dg . ig), where ig=io,, and Pthe model (D p,ip),
where ip=igy. The names S and P are reminiscent of the two analogue solutions which

Weore given respectively by Scott [14] and Park [12] to the equation D=[D-D ] in the
Cutegory of Scott domains.

We will end this section by pointing out a property of the interpretation function, which
will be useful in the sequel.

'ROPOSITION 8.

lot pand p' be two environments and let M be a A-term.

1 psp' thenMlp £ [IMIp'.

i) 11 p and p' are compatible then also [IM1p and [MIp' are compatible.
IPROOF.

I1oth points can be easily proved by induction on the structure of M.

! FORMAL SYSTEM FOR REASONING ABOUT INTERPRETATIONS IN
QUALITATIVE A-MODELS.

As we remarked in the introduction, it is particularly difficult to reason about the
interpretations of A-terms in a given qualitative A-structure. It is therefore desirable to
huild a formal system for correctly reasoning about these denotations.

A qualitative A-structure (D.i) is completely described once we have specified three
objects: DI, the compatibility predicate over |DIx|D|, and the function i. Hence the
interpretation of a term in (D,i) can be completely characterized once we have specified the
atoms of D belonging to it. The problem we want to solve can therefore be phrased in the
lollowing way:

I"ROBLEM.

Uiven a qualitative A-structure (D, 1), build a formal system |- for establishing judgements
ol the form M:a under a set of assumptions I'; the meaning of T'—~ M:a being that the atom
i belongs to the interpretation of M in (D,i) when the free variables of M are interpreted as
in I’

In cuse we have a finite inductive definition of (D, i), we can refer to the atoms of D as
(ypes and to the formal system as a type assignment system.
I'he analogous problem for Scott Do, -A-models is discussed in several papers, e.g.[5] and

[10] The language for describing finite elements of Scott Domains is the so called
intersection type language [2]. The main result is: for every Scott Dy, -A-model it is

[ossible to define an appropriate intersection type assignement system which satisfies the
Iequirements of the problem above.

IFrom now onwards, throughout all this section, fix a qualitative A-structure (D, 1), and
nssume that we are given a notation for the elements of |D| .

We will denote with ((al ,...,an} .a) where a, ajare notations for elements of [D|, the unique
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atom of |[[D= (DIl in the teace of the step-function Ax. if (V) A€ )then w elye @l

with il ({ay,....a,}.a)) the corresponding atom in D, when it exists

Define a context I' as a set of pairs x:a, where x is a variable and a€ (Dl As explatnsd
above the formal system we want to build should manipulate judgements of the farm
I'M:a, We want the following to hold:

I'—M:a is derivable if and only if a€ [MIp where p(x)={b | x:b € I'}

The definition of the interpretation function (see Definition 5) suggests a possible set ol
rules which unfortunately is not sound. More precisely the rule:

F'u{xay,..xa} -Ma b=il({ay,....a;}a))

(abstr)
I Ax.M:b

is incompatible with the (semantically obvious) projection rule:

xa€erl
(proj)
xa

or with the structural rule of weakening of premises in T, ie., with the rule:

I' —-M:a
(weak) ———————
T'u {xb} - M:a.

In fact, using these rules, one can easily derive that a non conslrgm fu‘ncllnu
"approximates" a constant function, say AX.y, thus contradicting Proposition 3.1). 't
istance:

yb € {x:a, y:b}
{xa, yb}-yb c=i(({a},b)
{yb} - Ax.y«c

and hence Ax.if a€x then b else & S Ax.y. This is in sharp contrast to what happens in

intersection type assignment systems. In fact, in the latter, the arrow type constructi
behaves like intuitionistic implication. |

In order to capture correctly the behaviour of traces in qualitative A-structures, we necd
a formal system with a relevant discipline of assumptions.
Let T be a context. We will denote with dom(T") the set{x | 3a. x;:a€l}.

(proj)

(abstr)

THE FORMAL SYSTEM S, ;)
S(p,i) consists of the following rules:

1) —mm
{x:a} xa

I'I—M:b {l"jl—N:aj}lstn b =i(({al ..... an}.a))

(2) 0)
(nz Tu (U ISan l'J) I"‘ MN:a
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o {xa, X} = Mia lag,....a )€ D x¢dom(l) b =i({ay,....an} )

(‘”(020) prs
x.M: b

Note that both rules (2) and (3) are parametric in n, as the notations 2)n20) and 3)(n>0)
indicate. In particular the instances of rule (2) and (3) for n=0 have the simple form:

T'Mb b=i((Ja)
(2)
I' - MN:a
; I' WMa x¢dom(T) b =i((D,a)
3
I 2Ax.M:b.

We assume that the judgements {ay,...,a }€ D and b =i(({ay,...,a,},a)) occurring in
the premises of rules (2) and (3) can be established using suitable formal systems €p and
=j Which encode, possibly finitely, the compatibility relation on |D| and the graph of i.

We will now show that S(p,i) is the correct solution to the problem stated above.

A context T is said to be consistent if and only if {x:a, x:b}Jc T implies a and b are
compatible. Moreover two contexts are said to be consistent if and only if their union is
consistent.

SOUNDNESS THEOREM.
Let (D, i) be a qualitative A-structure, and let M be a A-term. Then T - M:@aand T
consistent imply that a€ [MIpr in (D, i) , where pr&) = {b|x:b € T}. Moreover pr is

minimal among the environments p such that ae [M]p.

PROOF.

By induction on the structure of M.

- M is a variable. The proof follows from the fact that [MIpr =pr(M).

-M=2AxM'". T Zx.M":b implies b =i(({ay,... .a,}.a)), where Tufxay,..., x:ag M,
{al....,an)e D and x ¢ dom(T'). So, by induction p'=pr[{a1 ..... a, }/x] is a minimal

environment such that a€l[M'lp'. Since by definition we have both
lle.M']]pl-=Ki(2.dED.l[M']lpl-[d/x]) and ({ag,..., an),a)ETr(ldED.IIM']]pr[d/x]) we

can conclude that Ki({({al,..‘ ,an},a)})={b}C|Ikx.M']lpI-. The minimality follows from

the definition of interpretation of a term. In fact if there were p" such that be[[Ax.M']p"
and p"<p then [M'Ip“[{ay,...,a,} /x] = a, contrary to the minimality of p'.

- M=PQ. I'-PQ:a implies I'= I''u (u 1<j<n I'j) and T'P:b (I'j}— Q:aj)l <icm
({ay,...,a },a)=i(b) (n20). Since [PQIpr=H([PIpr)[QIpr, this implies aEIIPQ]%pr.
Moreover assume that there exists an environment p'<pr such that a€[PQlp’. This
implies 3{by,..., by} such that (g ass b, }.a)=i(c) and ce[Plp' and bjElIQ]]p'
(1<j<m). But, by Proposition 8.i), p'< pr implies [Qlp'<[QIpr , which means in
particular that Vt(1<t<n) Vj (1<j<m) a; and b, are compatible. But, by Proposition 3.ii),
this means that ((al ..... an] ,a) and ({bl ..... bm},a) cannot approximate the same stable
function, and hence b and ¢ cannot belong to the interpretation of the same term.

0

COMPLETENESS THEOREM.
Let (D,i) be a qualitative A-structure, and let M be a A-term. Then a € [MIp in (D, i)
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implies that there is a context I such that T | M:a and l'CI'p , Wwhere

I'p(x)=[x:b|h6p(x)}.

PROOEF.

By induction on the structure of M.

—’Mz=x. Then a€ [x]p implies p(x)=A and a€A. But {x:a}l- x:a and

{x:a}Crp=[x:blb€A}.

_Mz2ax.M". ae[Ax.M']p implies a=i(({ay.....a,},b)), where velM'Ipliay,....ay) /x]

and be[M'TplA/x] for any AC {ay,... ag) (A= {ag. a,}); this implies (by induction)

that there is a context TCT such that THM":b and T(x)={ay,....ayl
pliag an}lx] 1 n

So we have I'-{x:a ,.,.,x:an}}—Kx‘M':n.

_ M=PQ. Then a€ [PQIp implies ({ay...., ay}a)€ H([P1p) and ajel[Q]lp (1g)an)
(n20). So, by induction, there exist contexts T €T and T':C€T  such that: T  P:bsuch
that ({ay,....a},a)=i(b) and T - Q:ay (1<j<n), and this implies TU(U lsjsnfj)I—PQ::]

The following corollary summarizes the relationship between the qualitative A-structure
(D.l) and S(D,l)

COROLLARY 9.
[MIp={a|3r.T -MaandITC I'p}.

The following proposition is an interesting consequence of the relevant discipline of
assumptions in S(p j)-

Let M be a A-term. FV(M) will denote the set of variables occurring free in M.

PROPOSITION 10.

i) Let I I M:a. Then xedom(T) implies x€FV(M).

i) Let T M:aand T' = M:b. If T and T’ are consistent then {a,b} € D, and moreover il
a=bthenT=T".

PROOF.

i) Easy, by induction on M.

ii) The first part follows from the completeness theorem above and Proposition & 1), The
second part is an easy induction on Lhe structure of M taking into account Proposition .\n

4. EXAMPLES OF TYPE ASSIGNMENT SYSTEMS CORRESPONDING 16
PARTICULAR QUALITATIVE A-MODELS.

In this section we will show how to tailor the formal system defined in the provious
section to the qualitative A-models Q, S and P introduced in Section 2. We shall denote
them with I—Q , . |- p respectively. Since each of these models has a nice finite

inductive presentation we shall define Fo. g . - p as type assignment Systems Tl

technique illustrated by these examples should be easily applicable to any induetively
presented A-model M = (D.i). Actually a large portion of the construction we are ahout (o
carry out will be common to the three type assignment systems. We shall specinlize (b only
at the very end.

We start by giving finite inductive presentations of the models @, S, P. This amounts (v
giving three formal systems Fo, Fg, Fp. Let M be any of the three models Q, 8§ P the
system Fpg will characterize the language of types and will play also the role of the
systems €y and = of the previous section

As o preliminary step we define the lungunge L. Let Velo, [j@w) be an infinite sk ol
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variables. Terms of the language L, ranged over by &, are defined as follows:
o= 10p |l lay,....apl>alllsa (az1).

The systems Fpy formalizes one unary judgement over L called type and four judgements

over LxL, called comp, compe, nonc and =. The intended meaning of these judgements,
can be expressed using a surjective function I from terms @ of the language L satisfying
the judgment type & and atoms of the model M =(D,ipyp), as follows:

comp @, holds if and only if J() and Ia') are compatible but different atoms of M
compe «, &' if and only if J(a) and Ka') are compatible and possibly equal atoms of M
nonc ., if and only if o) and Ka') are incompatible atoms of M

« = @' if and only if Ka) is equal to Ka') .

Klay,....agl»a)= ipp (K ay)..... Koy}, Ka))

DEFINITION 11.
i) The following rules are common to the three systems FQ Ep, Fg: :

o eV type .  (comp 0. %) <i j<n comp ',
1) ———  2) (330)
type O type [ay,....a,] > compe ', &
compe @, comp &', nonc @, Q'
4) ———— 9 6) 7 —
compe @,( compe ', & comp @, 0 nonc &',
(comp O‘i'o‘j)lsi,jsnﬂn =o'
8) (n+mx1)
nonc [ay,...,@y] »a, g sqvesi@nam) 2%
(comp Qi,aj )lsi.jsnﬂn nonc Oz,Ot'
9 (n+m20)

nonc [Qq....,@pl >, [O‘n+1"--v°‘n+m] >

nonc al.a'l (comp ﬂi,aj )1Si.j$ﬂ (comp Q’.'i,Cl.j )1Si,jsm

10) (n+m>=0)
comp [ctq,..., @

(compe 0, ;)i j<n+im CSOWP o

11) (n+m>0)
comp [ay,..., apl > [0y, ... @

o is a permutation of [1,...,n]

12) (a>1)

loey,....0p) »a = [a'y

13) (020, m21)
WU b [ oy
yor S
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o= o a=a' o' =
4) ——— 15) ———— 16)
o= o' = o' = a
o=~ o type o o= o' comp a,” o = o' nomc &,
17) 18) 19)
type o' comp &, &' nonc @, @'
o = ' compe o, a"
20)

compe @, @'

ii) FQ is obtained by adding the following rule to the system at point i):
eV typea

comp ¢,

iii) Fg is obtained by adding the following rules to the system at point i):
¢i -¢je Vv ¢i EV

¢i’=‘¢j o;=[1-0;.

iv) Fp is obtained by adding the following rules to the system at point i):
0; ,¢)je Vi 9, €V

d)i“oj o;=[0;1>0;.

We denoted integer parameters in rules explicitly, as we did for the rules of S(p) ;.

A few comments on this definition are in order. Rule 2 is a distinctive rule of binary
qualitative domains. Rule 8 is a distinctive rule of the behaviour of traces of stable
functions. The rules for = imply that = is a congruence relation, that the predicates are
taken up to this congruence and that types are equivalent at least up to set-theoretical
equality of sub-expressions of the shape [ay,...,@,]. The remaining rules of i) should be

self explanatory. Rules ii), iii), iv) can be justified on the basis of the initial morphisms
respectively of Q, S and P, given at the end of Section 2. For instance the rule in ii) states
that, if O=(DQ.iQ). where D=lim ;g D, atoms of D are compatible with all types
Moreover these atoms are not functional and this implies that the model is not extensional
The first rule in iii) accounts for the fact that if S=(Dg.ig), where Dg=lim ;5 D, Dgy haty
a unique atom. The second rule enforces the equivalence bet ween this unique atom and the
atom in the trace of ig, which implies that the model is extensional. The rules of iv) can be
justified similarly.

If type @& holds, then we will say that (& is a type. The set of types will be ranged over by
o, 7. We are now ready to introduce the type assignment systems }—0‘ I=giEiEn

DEFINITION 12.

i) A basis B is a set of pairs x:0°, where ¢ is a type. We will denote the set {x | x.0€ I}
with dom(B).

ii) Let M be any of the models Q, S, P. Types are assigned to terms according to the
following type assignment system = pg . where Bl= pg M0 denotes that M has type o

in M | under the assumptions recorded in B. The type assignment system b= pag iy
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obtained by adding to the corresponding system Fpr the following rules:

(var) —————
{x:0} !—Mx:O'

B }—M M:[O‘l ..... o,l-o0 (Bi}'MNﬂi)lsisn

(_’E)(nZO)
Bu (U 1<i<n B‘ ) }—M MN:o
Bu{x:oy,..x:0,} Fpr Mio (comp Gi-oj) 1<i j<n xgdom(B)
(=D(a>0)
By AxM:iloy...., -0
B I—M M:o O=pT

(=p)

B - MiT

= pr denotes the congruence relation between types in Fyr .

The first part of the following theorem states that the formal systems of Definition 11
are sound and complete syntactic descriptions of Q, S, P . The second part rephrases the
results of Section 3 for Q, S, P and states that the type assignment systems above solve
our problem for these models.

ISOMORPHISM THEOREM.
Let M be any of the models Q, S, P.
a) For each model M =(D,ipy) there is a surjective function Ips from terms of L satisfying

the judgment type @ to the atoms of M, satisfying the following conditions:
i) compe @, holds if and only if Ips (@) and Ipg(ce’) are compatible and possibly

equal atoms of M;
ii) comp @, @' holds if and only if Ipns (@) and Ipg(@') are compatible but different

atoms of M;
iii) nonc &, holds if and only if Ips () and Ips(’) are incompatible atoms of M;

iv) @ = @' holds if and only if Ips (@) and Infd@’) are equal atoms of M;
Wy [y, 00> @)= ipg (AT @)oo, Ing(@)}, Iy @),
b) Foreach M the type system | pr is sound and complete for M, ie.
[MIMp = {Ipf(a) | 3B.B b= pg M:a and BC By}, where B(x)={b | Ipg (b)ep()).

PROOF.
We will only outline this proof.
a) In the case of the model Q the isomorphism I is inductively defined as follows:

Io(®) = wo((10},@)) and

Iglloy....,04120) = W o((@.({I (o). Ig(T )} I (G,

where W : [P(@)x[Dn=Dpll=IDgl is the characteristic isomorphism of Q. Thence
iglIg(o ). Ig(o )} IgloN)= I(lo | ...,0]-0). The notation for the atoms of Q

should be self-explanatory.
In the case of the model S the isomorphism Ig is inductively defined as:

Is(0)=y ((F.9)) and Ig(loy,....0,1»0) = wg ({Ig(a ), .., Ig (o)}, Ig ()
where Wg :|[Dg=Dgll=IDglis the characteristic isomorphism of S .



In the case of the model P the isomorphism Ip is inductively defined as follows:

Ip(¢)=y p(({0},0)) and Ip ([07y,....0,]20)= ywp(({ Ip(o()..., Ip(a )}, Ip (),

where Y p:|[D p—¢D pl|-=ID pl is the characteristic isomorphism of P

By a lengthy induction, taking into account the rules of Fps and the inductive nature of the

atoms of M, one can now show that for each model the translation function IM is well

defined, surjective and satisfies the conditions i)-v). Therefore each M is isomorphic to the

qualitative A-model

M'=({A' | A'={{a}|3A.A is a set of words in L.€A and VYV, BEA. (type &, type [}
and compa,B)} }.ipr0)

where we denote with { o} the equivalence class of each element 0 of L. modulo =M and

where ipr(({{o(}.....{o}} Aoh)={loy,....0,]=»c}.

The obvious rewritings of the system S(DM i) and the soundness and completeness

theorems allow us to prove part b). .
The results of Section 3 can now be phrased in the language of type assignment systems.
The proofs can be translated from the corresponding ones utilizing the isomorphisms given
in the proof of the preceeding theorem. First of all we need to introduce the notion of
coherent basis, in analogy to that of consistent context. A basis B is said to be coherent if
{x:0, x:0'}< B implies comp 0 ,0". Moreover two basis are said to be coherent if their
union is coherent

PROPOSITION 13.
i) Let BI—M M:o. If x€dom(B) then x€FV(M).

ii) Let B I—M Ax.M:0 and let B be coherent. Then 0= [0‘1,... .Cn] =71 such that type 0.
iii) Let B }—M M:o, B' I—M M:T and let B and B' be coherent; then comp 0, T.
iv) Let B - s M:G, B' l—M M:T, let B and B' be coherent and let 6=T1; then B=B",

5. TYPE ASSIGNMENT SYSTEMS AT WORK

In this section we will show how to derive properties of the A-theory induced by the
model M from properties of the type assignment system = pr. Recall that the A-theory

induced by a model M is the set of equations:
Tp= {M=N|MN € A and Vp. IMIMp =[N1Mp}.

We shall consider first the model Q.
First of all, we will show that every derivation A of B g M:0 in ¢ is

normalizable. Here normalizable means that A can be transformed into a derivation A’ of
Bl—OM':o‘ where no application of the rule (=1) in A' is immediately followed by an

application of the rufe (= E) and M" is a P-reduct of M. Using this fact we will show that
the interpretation of a term in Q is the collection of the interpretations of its syntactical
approximants. This will be called the Approximation Theorem for the model Q.

Trought this section, we will restrict ourselves to derivations where the basis is consistent.

DEFINITION 14.
i) Let A be the derivation: B-pM:0. A cut in A is an application of the rule (=1)

immediately followed by an application of the rule (= E);

ii) The degree of a cut is the number of type symbols occurring in the premises of the
application of the rule (= E) determining the cut.

iii) The degree of a derivation A, G(A), is the pair <d,n> where n is the number of cuts in
A and d is the maximum degree of all cuts in A.

iv) A deduction A is normal if and only if G(A)=<0,0>.

We consider the pairs ordered in lexicographic order ( i.e., <d,n><<d’,n"> if and only if
(d<d' ) or (d=d' and n<n') ).

LEMMA 15. : :
A:BI'—QM:O' and G(A) > 0 implies that there exists A" such that A :BP—QM :0, where M
B-reduces to M' and G(A') < G(A).

PROOF.

We have to distinguish two cases. '
1) At least one of the cuts with the maximum degree in A is of the following shape:

Bl—QM:T x¢€dom(B)
(=1
BI—-QKX.M:[ -1
(=E)
Bl—o(lx.M)N:r.

This implies that the full derivation is A: BU B'}—QC[(Ax.M )NI:o, for a suitable context

C[ ] and type o. . !
Then, if X occurs in M at all, x occurs in subterms of M, Si[x] (i>0) say, which occur in

subderivations of A of the shape:

i Blll_oRl[ ]-’0"

(-E)

A
Bi. }_ORiSi[X]:Gi'

Then A' is obtained from A by performing the following three operations:
i) replace every free occurrence of x with N in the subderivation ending with the cut. In
particular this implies that every A; is replaced by :

Aili Bi' '—QRxl ]-*O'i
(=E )

Bi. |—0Risi [N \xl:oi

ii) replace (Ax.M)N and every descendent of it with M[N\x]
iii) delete the cut.
Thus we have A": BUB' - oCIMIN\x]]:c and G(A") < G(A).

In the case x does not occur in M, simply erase the cut, and replace (Ax.M)N and every
descendent of it with M.
2) All the cuts with the maximum degree in A are of the following shape:

Bu{x:0¢,....x:0.} ;T (comp G;,0:) (i ; x€dom(B)
1 n 1< j<n

(B; '_ON:Gi)IS i<n

(=D

B }—Qkx.M:[O'l....,Un]—»'(

(=E)
BU(U 1< iSnBi) I"Q(AX.M)NIT.

Pick one of these. Let the full derivation be A: BUB' }—QC[(KX.M JNl:a, for a suitable

context C[] and type 0. Now, by Proposition 13.1), x occurs free in M. Let p>1 be the
number of occurrences in A of subderivations A; (1<i<p), consisting of an application of

the (var) rule:
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Ap: o (var)

{x:0;) I—ox:O'i :

Then A' is obtained from A by performing the following three operations:

i) replace every free occurrence of x with N in the subderivation ending with the cut. In
particular this implies that every A; is replaced by: A;" :B; - oN:0; (1<i<n), and that
the occurrences of x in subterms of M for which no type has been derived in A, if any,
are handled asin 1)

ii) replace(Ax. M)N and every descendent of it with M[N\x]

iii) delete the cut,

Thus we have A': BUB' I—OC[M[N\x]]:O' and G(A') < G(A).

The following theorem is an easy consequence of the lemma we have just proved.

THEOREM 16.
If A:B =-pM:0 then there exists a normal derivation A' and a term M' such that M
B-reduces to M'and A":B l—-QM':O'.

0

We will now recall the notion of approximate normal form first introduced in [15] in order
to discuss the interpretation of non-terminating A-terms in Scott Domains.

DEFINITION 17.
i) The set A of the approximate normal forms is defined inductively as:
- a term variable belongs to A ;
- the constant Q) belongs to A ;
=AY A, belong to A | then Axy,..., X

variables Xfaay Xz

ii) If M€ A, the set of the approximants of M is:
AM)= {A€ A|IM'. M B-reduces to M' and A and M' match up to subterms of M'
corresponding to occurrences of Qin A}.

.ZA ... A belongs to A | for any term

APPROXIMATION THEOREM.
BQM:0 if and only if 3A€ AM). B-pA:0.

Ge., IMI9=u([A1Qp | Ae AOM))).
PROOF.
(only if part) B=-oM:0 implies (by Lemma 15) 3A:B FQM':0 and M B-reduces to M’

and A is normal. Let A be the approximant of M obtained from M'by replacing with Q
every subterm of M' to which no type has been assigned by A. Clearly B I—QA:O'. If A has

assigned a type to every subterm of M', then M' is in normal form and A=M".
(if part) Let A be an approximant of M such that JA:B l-—QA:O'. Then M reduces to M',

where M is obtained from A by replacing the occurrences of () with suitable subterms, say
Ny 'Np' Every occurrence of ) in A must occur in subderivations of the shape:

B’ }—QA':[ ]-1
(»E)—————
B' I-QA'Q:I.

So a derivation A":B l—OM':O' can be obtained from A simply by replacing in A the
occurrences of O with Ny,..., Np respectively. Since [ 19 satisfies B-equality, by the
Isomorphism Theorem, we have that B I—QM':O‘ implies B -oM:0.

0
The Approximation Theorem is a powerful tool for investigating the theory induced by a
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model. In this case it implies immediately, for instance, that the theory of the model Q is
sensible (in the sense of [3]), and that [Y] is Tarski's least fixed point operator.
Moreover, using the Approximation Theorem and following the argument in [13], the
theory of Q can be characterized by the following property.

PROPERTY 18.

Vp. [MIpe [Nlp if and only if

W CI 1.(if C[M] reduces to a head-normal-form with no initial abstractions then the same
holds for C[N1).

The same property is satisfied by the interpretation in the filter model [2], which is the
minimal solution to the domain equation D = P(@w)x [D - D], i.e., it is the limit model
homologous to Q , constructed using Scott's Domains.. Moreover the theory of Q is the
same as the theory of Scott’s P,.

Here is an interesting corollary of the Approximation Theorem, for the A-I-calculus.

The A-I-calculus is the restriction of the A-calculus to relevant terms.

DEFINITION 19.

A relevant term is inductively defined as follows:

- a variable is a relevant term;

- if M and N are relevant then MN is relevant;

- if M is relevant and x€FV(M) then Ax.M is relevant.

Let a derivation A be proper if and only if no sub-expression of any type in A is [1.

NORMALIZATION PROPERTY (for the A-I-calculus).
Let M be a term of the A-I-calculus. M is normalizable if and only if there exists a proper
derivation A:BFgM:0 .

PROOF.

(only if part) Let M be a normal form of the A-I-calculus. We can easily build a proper
derivation A for M in the following way.

If M=x, then A{x:a}bx:a.

If MEAXy...X.ZM (... M, let A;:B;-M;:0; (1<i<m) be proper derivations, such that A;
and A: do not have type variables in common if i=j (it is easy Lo see that it is always
possible). Then one can show that Uy o; ., B is a coherent basis. So A is the following

proper derivation:

{zlo1=los]-. oo 120} zlo1=[0s]-.. . »lo 120 Bi-M 0

(=E)
{zloI=lo,]-.. . slo 120} Bz My: [05]-... =0 156 By-Mj:0,
(=E)
{z:lo(]=l0,]>.. . =lo1-0}u Bju Bz M{M;: [03]-... [0, 1-0
(=E)
B'= {z:lo(l=sloy]=...slo -0} u (U lsiSmBi)i_ ZM ... M :0
1
20 B'—{xn:‘rn_l,...xn:rn‘pn}}—lxn. zMy... Ml T oy Tn‘p“]—?@
(=D
(=0

B=B'-(u lSiSn{xi:Ti.l '~~-xiiri.pi])}—kxl'--"n-ZM l"'Mm: (o3
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where 0= [ Ty g t‘-PI]_)"'_) [ T gy Iﬂ’Pn]_w' ¢Iis a fresh type variable and
{xi:Ii fro- XT3 p_}ana all and only the assumptions on X; in B".
’ Pi

It is easy to see that, if M' is any term of the A-I-calculus which is a p-expansion of M,
then A can be transformed into a proper derivation A":B"FM":0.

(if part) In order to proof this part we need only to notice that if we apply repeatedly
Lemma 135 to the derivation A: BI—Q M:0 we will reach eventually the normal form of M.

1]
Finally we will give a result concerning the theory of the model P. One can easily show
that QI—P(kx.xx)(lx.xx) : & and hence ﬁ(lx.xx)(}.x.xx)]lpz Ile‘(l.x.xx)(lx.xx)IIP.

Hence the theory of P does not equate all unsolvable terms. One can actually show that
this theory is not sensible, since [114= [YB]where Iis the identity combinator, Y is the
fixed point combinator and B is the composition combinator.

We shall end this paper with some conjectures concerning A -theories induced by qualitative
A- models suggested by the nature of the type assignment systems |—pz. The theory of the

model S should be the theory H", i.e. the maximal sensible theory and hence it should
coincide with the theory of the homologous limit model constructed using Scott
Domains. On the other hand the theory of the model P should be strictly included in the
theory of the homologous limit model constructed using Scott Domains [10]. No
qualitative A-model should in fact induce such a theory.
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